Variable Selection with Nonconcave Penalty Function on Reduced-Rank Regression
نویسندگان
چکیده
منابع مشابه
Efficient Regularized Regression for Variable Selection with L0 Penalty
Variable (feature, gene, model, which we use interchangeably) selections for regression with high-dimensional BIGDATA have found many applications in bioinformatics, computational biology, image processing, and engineering. One appealing approach is the L0 regularized regression which penalizes the number of nonzero features in the model directly. L0 is known as the most essential sparsity meas...
متن کاملVariable selection in linear regression through adaptive penalty selection
Model selection procedures often use a fixed penalty, such as Mallows’ Cp, to avoid choosing a model which fits a particular data set extremely well. These procedures are often devised to give an unbiased risk estimate when a particular chosen model is used to predict future responses. As a correction for not including the variability induced in model selection, generalized degrees of freedom i...
متن کاملSparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection in Multivariate Regression
The reduced-rank regression is an effective method to predict multiple response variables from the same set of predictor variables, because it can reduce the number of model parameters as well as take advantage of interrelations between the response variables and therefore improve predictive accuracy. We propose to add a new feature to the reduced-rank regression that allows selection of releva...
متن کاملVariable Selection in Function-on-Scalar Regression.
For regression models with functional responses and scalar predictors, it is common for the number of predictors to be large. Despite this, few methods for variable selection exist for function-on-scalar models, and none account for the inherent correlation of residual curves in such models. By expanding the coefficient functions using a B-spline basis, we pose the function-on-scalar model as a...
متن کاملNonparametric Reduced Rank Regression
We propose an approach to multivariate nonparametric regression that generalizes reduced rank regression for linear models. An additive model is estimated for each dimension of a q-dimensional response, with a shared p-dimensional predictor variable. To control the complexity of the model, we employ a functional form of the Ky-Fan or nuclear norm, resulting in a set of function estimates that h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2015
ISSN: 2383-4757
DOI: 10.5351/csam.2015.22.1.041